Lineare Algebra Beispiele

Bestimme den Definitionsbereich (3 Quadratwurzel von 27x^27)/(3x^-2)*((-3x)^3)/(3x^-1)
Schritt 1
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 2
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Teile jeden Ausdruck in durch .
Schritt 2.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.1.2.1.2
Dividiere durch .
Schritt 2.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.3.1
Dividiere durch .
Schritt 2.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Schritt 2.3
Vereinfache die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Ziehe Terme aus der Wurzel heraus.
Schritt 2.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1.1
Schreibe als um.
Schritt 2.3.2.1.2
Ziehe Terme aus der Wurzel heraus.
Schritt 3
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 4.1.2
Kombiniere und .
Schritt 4.2
Setze den Zähler gleich Null.
Schritt 4.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 5
Setze den Nenner in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6.1.2
Kombiniere und .
Schritt 6.2
Setze den Zähler gleich Null.
Schritt 6.3
Da , gibt es keine Lösungen.
Keine Lösung
Keine Lösung
Schritt 7
Setze die Basis in gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 8
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 9